
Chapter 4:

Writing and Designing a Complete 

Program

Programming Logic and 

Design, Third Edition 

Introductory



Programming Logic and Design, Third Edition Introductory 2

Objectives

• After studying Chapter 4, you should be able to:

• Plan the mainline logic for a complete program

• Describe typical housekeeping tasks

• Describe tasks typically performed in the main 

loop of a program

• Describe tasks performed in the end-of-job 

module



Programming Logic and Design, Third Edition Introductory 3

Objectives (continued)

• Understand the need for good program design

• Appreciate the advantages of storing program 

components in separate files

• Select superior variable and module names

• Design clear module statements

• Understand the need for maintaining good 

programming habits



Programming Logic and Design, Third Edition Introductory 4

Understanding the Mainline Logical 

Flow Through a Program

• It’s wise to try to understand the big picture first

• You can write a program that reads records from 
an input file and produces a printed report as a 
procedural program:

– one procedure follows another from the 
beginning until the end



Programming Logic and Design, Third Edition Introductory 5

Understanding the Mainline Logical 

Flow Through a Program (continued)

• The overall logic, or mainline logic, of almost 
every procedural computer program follows a 
general structure that consists of:

– Housekeeping, or initialization tasks

– Main Loop

– End-of-job routine



Programming Logic and Design, Third Edition Introductory 6

Understanding the Mainline Logical 

Flow Through a Program (continued)



Programming Logic and Design, Third Edition Introductory 7

Housekeeping Tasks

• Housekeeping tasks include all the steps that 

must take place at the beginning of a program

• Very often, this includes:

– Declaring variables

– Opening files

– Performing any one-time-only tasks that should 

occur at the beginning of the program, such as 

printing headings at the beginning of a report

– Reading the first input record



Programming Logic and Design, Third Edition Introductory 8

Declaring Variables

• When you declare variables, you assign 

reasonable names to memory locations, so you 

can store and retrieve data there

• Declaring a variable involves selecting a name 

and a type

• You can provide any names for your variables

• The variable names just represent memory 

positions, and are internal to your program



Programming Logic and Design, Third Edition Introductory 9

Declaring Variables (continued)

• In most programming languages, you can give a 

group of associated variables a group name

– Allows you to handle several associated 

variables using a single instruction

– Differs in each programming language

• This book follows the convention of underlining 

any group name and indenting the group 

members beneath



Programming Logic and Design, Third Edition Introductory 10

Declaring Variables (continued)



Programming Logic and Design, Third Edition Introductory 11

Declaring Variables (continued)

• In addition to declaring variables, sometimes you 

want to provide a variable with an initial value

– Providing a variable with a value when you 

create it is known as initializing, or defining the 

variable

• In many programming languages, if you do not 

provide an initial value when declaring a variable, 

then the value is unknown or garbage



Programming Logic and Design, Third Edition Introductory 12

Declaring Variables (continued)

• Some programming languages do provide you 

with an automatic starting value

– for example, in Java, BASIC, or RPG, all numeric 

variables automatically begin with the value zero

• However, in C++, C#, Pascal, and COBOL, 

variables do not receive any initial value unless 

you provide one



Programming Logic and Design, Third Edition Introductory 13

Opening Files 

• If a program will use input files, you must tell the 
computer where the input is coming from—for 
example, a specific disk drive, CD, or tape drive

– Process known as opening a file

• Because a disk can have many files stored on it, 
the program also needs to know the name of the 
file being opened

• In many languages, if no input file is opened, 
input is accepted from a default or standard input 
device, most often the keyboard



Programming Logic and Design, Third Edition Introductory 14

A One-Time-Only Task—Printing 

Headings

• A common housekeeping task involves printing 

headings at the top of a report

• In the inventory report example, three lines of 

headings appear at the beginning of the report

• In this example, printing the heading lines is 

straightforward:

– print mainHeading

– print columnHead1

– print columnHead2



Programming Logic and Design, Third Edition Introductory 15

Reading the First Input Record

• If the input file has no records, when you read the 

first record, the computer:

– recognizes the end-of-file condition and 

– proceeds to the finishUp() module, never 

executing mainLoop()



Programming Logic and Design, Third Edition Introductory 16

Reading the First Input Record 

(continued)

• More commonly, an input file does have records

• After the first read the computer:

– determines that the eof condition is false, and 

– the logic proceeds to the mainLoop()

• Immediately after reading from a file, should 
determine whether eof was encountered



Programming Logic and Design, Third Edition Introductory 17

Writing the Main Loop

• The main loop of a program, controlled by the 

eof decision, is the program’s “workhorse”

• Each data record will pass once through the main 

loop, where calculations are performed with the 

data and the results printed

• Eventually, during an execution of the 

mainLoop(), the program will read a new record 

and encounter the end of the file



Programming Logic and Design, Third Edition Introductory 18

Writing the Main Loop (continued)

• When you ask the eof question in the main line of 

the program, the answer will be yes, and the 

program will not enter the mainLoop()again\

• Instead, the program logic will enter the 

finishUp()routine



Programming Logic and Design, Third Edition Introductory 19

Performing End-Of-Job Tasks

• Within any program, the end-of-job routine holds 

the steps you must take at the end of the 

program, after all input records are processed

• Very often, end-of-job modules must close any 

open files

• The end-of-job module for the inventory report 

program is very simple



Programming Logic and Design, Third Edition Introductory 20

Understanding the Need for Good 

Program Design

• As your programs become larger and more 

complicated, the need for good planning and 

design increases

• Each program module you design needs to work 

well as a stand-alone module and as an element 

of larger systems



Programming Logic and Design, Third Edition Introductory 21

Storing Program Components in 

Separate Files

• If you write a module and store it in the same file 

as the program that uses it, your program files 

become large and hard to work with, whether you 

are trying to read them on a screen or on multiple 

printed pages

• In addition, when you define a useful module, you 

might want to use it in many programs

• Storing components in separate files can provide 

an advantage beyond ease of reuse



Programming Logic and Design, Third Edition Introductory 22

Storing Program Components in 

Separate Files (continued)

• When you let others use your programs or 

modules, you often provide them with only the 

compile version of your code, not the source 

code, which is composed of readable statements

• Storing your program statements in a separate, 

non-readable, compiled file is an example of 

implementation hiding, or hiding the details of 

how the program or module works 

• Other programmers can use your code, but 

cannot see the statements you used to create it



Programming Logic and Design, Third Edition Introductory 23

Selecting Variable and Module Names

• An often-overlooked element in program design 

is the selection of good data and module names 

(sometimes generically called identifiers)

• Every programming language has specific rules 

for the construction of names—some languages 

limit the number of characters, some allow 

dashes, and so on



Programming Logic and Design, Third Edition Introductory 24

Designing Clear Module Statements

• In addition to selecting good identifiers, use the 

following tactics to contribute to the clarity of 

your program module statements:

– Avoid confusing line breaks

– Use temporary variables to clarify long statements

– Use constants where appropriate



Programming Logic and Design, Third Edition Introductory 25

Avoiding Confusing Line Breaks

• Some older programming languages require that 
program statements be placed in specific 
columns 

• Most modern programming languages are free 
form



Programming Logic and Design, Third Edition Introductory 26

Avoiding Confusing Line Breaks 

(continued)



Programming Logic and Design, Third Edition Introductory 27

Using Temporary Variables to Clarify 

Long Statements

• When you need several mathematical operations 

to determine a result, consider using a series of 

temporary variables to hold intermediate results



Programming Logic and Design, Third Edition Introductory 28

Using Constants Where Appropriate

• Whenever possible, use named values in your 

programs



Programming Logic and Design, Third Edition Introductory 29

Maintaining Good Programming Habits

• Every program you write will be better if you plan 

before you code

• If you maintain the habits of first drawing 

flowcharts or writing pseudocode, your future 

programming projects will go more smoothly

• If you walk through your program logic on paper 

(called desk-checking) before starting to type 

statements in C++, COBOL, Visual Basic, or Java, 

your programs will run correctly sooner



Programming Logic and Design, Third Edition Introductory 30

Summary
• When you write a complete program, you first 

determine whether you have all the necessary 

data to produce the report

• Housekeeping tasks include all steps that must 

take place at the beginning of a program

• The main loop of a program is controlled by the 
eof decision

• As your programs become larger and more 

complicated, the need for good planning and 

design increases



Programming Logic and Design, Third Edition Introductory 31

Summary (continued)

• Most modern programming languages allow you 

to store program components in separate files 

and use instructions to include them in any 

program that uses them

• When selecting data and module names, use 

meaningful, pronounceable names

• When writing program statements, you should 

avoid confusing line breaks, use temporary 

variables to clarify long statements, and use 

constants where appropriate


